### FRC Team 1987



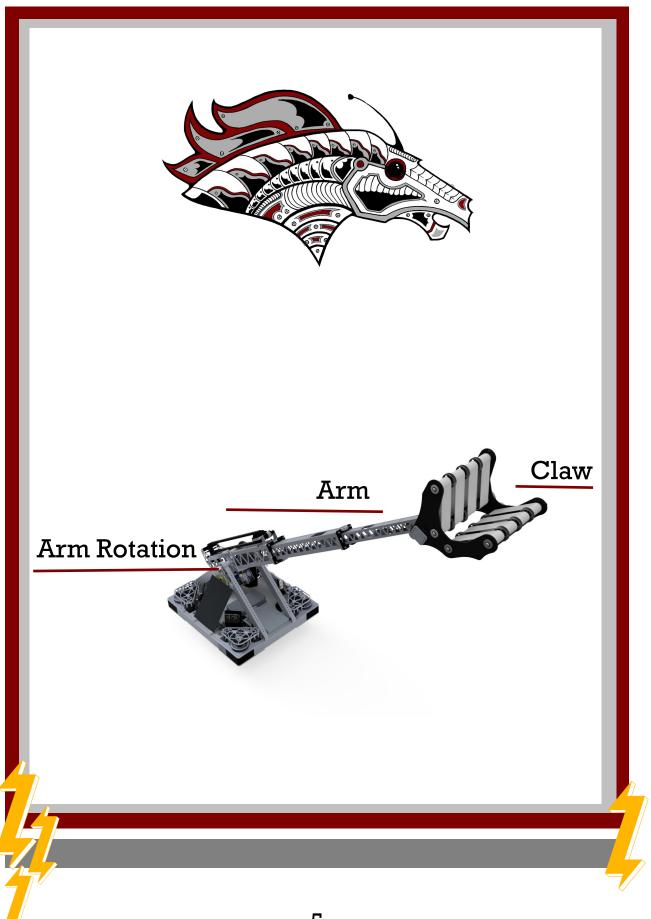
The Broncobots

# 2023 Technical Book

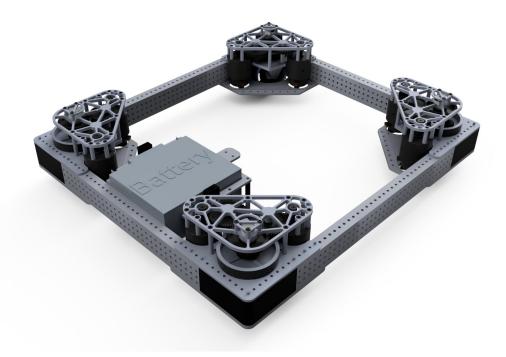


## 6,734+ Student Hours

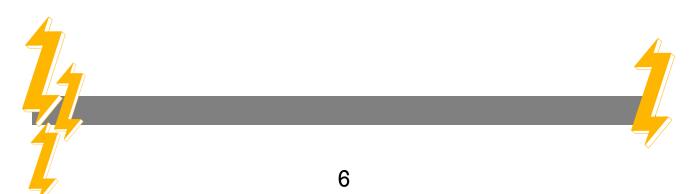
26 Students


Our student led team designed, built, and programmed the robot. Students designed the robot in Onshape and programmed in Java. Mentors stepped in when needed.

### Table of Contents


| Robot Overview    | 4-5   |
|-------------------|-------|
| • Drive Train     | 6     |
| • Arm Rotation    | 7     |
| • Telescoping Arm | 8     |
| • Wrist           | 9     |
| • Claw            | 10    |
| • Programming     | 11-15 |

# FlipSide






### **DRIVE TRAIN**



- 4 Swerve Drive Specialties MK4i Modules
- Powered and Driven by a total of eight Falcon 500 motors
- Modules are inverted for motor protection, space saving and lower center of gravity.



## **ARM ROTATION**



- Two Falcon 500s on a 139.5:1 reduction
- Chain runs from the gearbox to 54T sprocket
- · Chain tensioned using COTS clamping bearing blocks with CAMS integrated with custom gearbox plates
- Arm rotates on two custom aluminum hub shafts spinning on angular contact bearings for increased robustness
- Low gearbox for optimal CG



### **TELESCOPING ARM**



- Made up of 4x4, 3x3, and 2x2 inch 1/8" wall lightened tubes in cascading configuration
- One Falcon 500 powering a 10:1 reduction
- 15mm wide, 5mm HTD timing belt runs on a 30T driven pulley to form a U-shape belt path for max belt contact
- Belts run around tubes on aluminum tensioner pulley mounts with 5/8" OD bearings
- Energy chain tensioned using constant force spring in order to properly organize and protect wiring






- One BAG motor powering a 150:1 reduction VersaPlanetary gearbox and belt to reduce shock
- BAG Motor is set in the top of the 2x2 tube
- Collector rotates on two oil-embedded flanged bronze bushings
- Claw attached to wrist with 12.125" MAX spline
  shaft and MAX pattern plates







- Collects cones and cubes using 8, 2" wide poly belts
- Four rollers comprised of 2" compliant wheels, 2.5" 3D printed poly belt rollers
- Intake rollers powered by a NEO 550 with a 9:1 reduction



#### Software

#### <u>Drivetrain</u>

- Magnetic encoder on each of the four swerve modules to measure steering absolute position (CANCoders)
- Closed loop PID control for velocity and position of the swerve module Falcons
- Autonomous commands utilize the Path Planner tool to follow paths using motion profiling
- Odometry fuses data from Falcon internal encoders, CANcoders, and a pigeon to track field-relative pose
- Falcon motors and CANcoders within the drivetrain are linked via a CANivore, providing a differentiated CAN bus, and allowing for more bus bandwidth
- Swerve modules can be oriented in an X stance to prevent rolling off of an unbalanced Charge Station

### Software

#### Arm

- Falcon motors operate arm rotation and extension. The arm has a rotation range of 240° with an extension capable of reaching up to 42 inches
- Arm rotation is monitored with a CANcoder using absolute position, while the extension fuses a 10-turn potentiometer with absolute position and the internal encoder of the Falcon for relative position
- Rotation and extension movements are controlled using synchronized closed loop trapezoidal motion profiles
- An interpolated data table of arm length to arbitrary feed-forward values is used to offset gravity across the full range of rotation and extension positions



#### Software

#### <u>Wrist</u>

- The desired wrist position is maintained by using a closed loop trapezoidal motion profile which references a Mag Encoder for absolute position
- The BAG motor is stalled while holding position the entire match. Additional voltage and current limits are set to protect the motor and operate within manufacturer specification

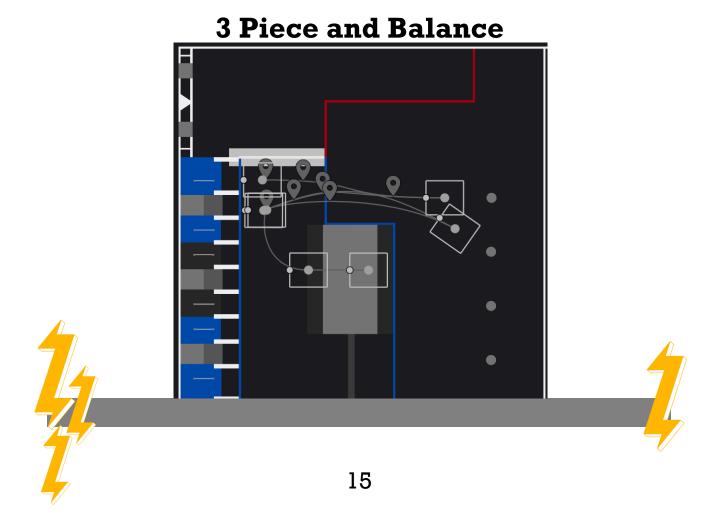
#### <u>Claw</u>

- The claw detects when a game piece is collected by sensing a current spike on the NEO 550 and remembers whether it is grasping a cone or cube
- If the grasped game piece is a cube, then the claw will continuously pull the cube into the claw to maintain grip

### Software

#### <u>Vision</u>

- There are multiple Limelight<sup>™</sup> 3's positioned facing outward giving a front-facing view on both sides of the robot to periodically update the robot pose
- The updated pose removes any error from the limelights and keeps the position accurate at all times


#### Driver Controls

- Driver uses an Xbox controller with commands and command groups assigned to buttons
- While driving, the driver has the ability to reset the gyro, making field orientation as easy as a single button press
- Once a game piece is collected, the robot knows whether it's a cone or cube, and changes its scoring position accordingly
- The co-driver is able to set the robot's scoring height with three buttons, allowing the driver to score with a single button press
- The driver has a "finesse" button that moves the robot at half speed allowing for easier collecting and scoring of game pieces
- Using the d-pad, the driver can lock the robot heading to any cardinal direction

### Software

#### Automation:

- The superstructure and drive train are synchronized to optimize autonomous routines
- Before each match the drive team can pick between multiple autonomous paths, with some ending autobalanced given match strategy
- Auto-balancing is achieved using an IMU and PID controller to dynamically control the speed of the robot given the pitch of the drivetrain





# FRC Team 1987 The Broncobots